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The material in this supplement is assumed to be mostly review material. If you have
never studied exponential and/or logarithm functions before then you should find a text
that covers this material in greater detail (e.g., the full version of our textbook).

1. Exponential functions

Definition 1.

A function of the form
y = bx,

where x is the independent variable and b is a constant, is called an exponential
function.

Comments:

• The constant b that appears in the definition above is called the base of the expo-
nential function.
• In order that the exponential function be defined for all (real) x the base is assumed

to satisfy b > 0. We also assume that b 6= 1 so that y = bx is not a constant function.

Fact 1.

The function y = bx is defined for all x and

(1.1) bx > 0

for all x.

Exponential functions have very useful algebraic properties†:

Fact 2.

a. b0 = 1
b. b1 = b
c. bx1+x2 = bx1 · bx2

d. b−x = 1/bx

e. bax = (ba)x = (bx)a

As mentioned in Fact 1, exponential functions are defined for all x. The graph of y = bx

has one of two characteristic forms, depending on whether 0 < b < 1 or 1 < b.

†The list includes some redundancy, but these are the algebraic properties that we use the most, so I
listed them all.
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Fact 3.

If b > 1 then the function y = bx increases (very rapidly) as the variable x increases, and
approaches 0 when x takes very large negative values. If 0 < b < 1 then y = bx approaches
0 as x increases, and grows very large when x takes large negative values.

Exponential functions grow very rapidly (when the base is greater than 1). People often
use the expression ‘growing exponentially’ to mean growing rapidly. To get a sense of
how fast exponential growth really is, read on.

Fact 4.

If b > 1 then the function y = bx grows (eventually) more rapidly than any power of the
variable x. In other words, for any power k, no matter how large

bx > xk,

once x is large enough.

To get a better idea of what this is saying look at a numerical example. If b = 1.1 and
k = 100, then when x is relatively small x100 will be bigger than 1.1x, as the first few entries
in the table below indicate. However when x increases, 1.1x grows larger than x100, and
the difference, 1.1x− x100, grows exponentially with x, (remember, 10k is a 1 followed by k
zeros).

x x100 1.1x 1.1x − x100

2 1.26× 1030 1.21 −1.26× 1030

10 10100 2.5937 −10100

100 10200 13780 −10200

1000 10300 2.47× 1041 −10300

10000 10400 8.449× 10413 8.449× 10413

100000 10500 1.855× 104139 1.855× 104139

1.1 Compound interest

Exponential functions provide one of the simplest and most important models for growth,
whether its growth of a population in the biological setting or growth in the value of an
investment.

An investment with interest rate r, compounded annually, grows according to the simple
rule that at the end of each year the amount r · S is added to the investment, where S is
the value of the investment at the end of the previous year. The initial amount invested,
P0, is called the principal. We use the variable t to measure years, and let S(t) denote the
value of the investment after t years, then

S(0) = P0

S(1) = P0 + r · P0 = P0(1 + r)
S(2) = P0(1 + r) + r · P0(1 + r) = P0(1 + r)2

S(3) = P0(1 + r)2 + r · P0(1 + r)2 = P0(1 + r)3

...
S(t) = P0(1 + r)t−1 + r · P0(1 + r)t−1 = P0(1 + r)t
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Example 1.
Suppose that an investment earns the interest rate r = 3% (= 0.03) , compounded annu-

ally, and the principal is P0 = $1000.00. After 1 year the value of the account is

S(1) = 1000(1 + 0.03) = $1030.00.

After 5 years, if the money is left untouched, the value of the account will be

S(5) = 1000(1 + 0.03)5 ≈ 1000 · 1.15927 = $1159.27,

and after 10 years the account will be worth

S(10) = 1000(1 + 0.03)10 ≈ 1000 · 1.34392 = $1343.92.

Different investments have different periods of compounding. The interest on some invest-
ments is compounded quarterly (4 times a year), on others it is compounded monthly (12
times a year), and frequently (e.g., standard savings accounts) the interest is compounded
daily (365 times a year, or 360, depending on who you ask).

If an investment earns the annual interest rate r, compounded k times a year, then the
year is divided into k periods, and at the end of each period the amount (r/k) · S is added
to the value of the investment, where S is the value of the investment at the end of the
previous period. We want to derive a formula for

Sk(t) = the value of the investment after t years,

as we did for interest compounded annually. I’ll do this in two steps (really just 1.2 steps).
First denote by S(m) the value of the investment after m periods (days, months, etc.).

Then, analogously to the case of interest compounded annually,

(1.2) S(m) = P0

(
1 +

r

k

)m
,

where P0 is the principal as before. Second, in t years there are m = kt periods (k periods
in each year), so formula (1.2) gives the following

Fact 5.

If an investment earns an annual interest rate r, compounded k times a year, then the
value of the investment after t years is given by

(1.3) Sk(t) = P0

(
1 +

r

k

)kt
,

where P0 is the initial investment (the principal).

Comments:
• The formula (1.3) includes the case of interest compounded annually, which corre-

sponds to k = 1.
• The function Sk(t) is an exponential function of t (multiplied by the constant P0).

The base of this exponential function is

bk,r =
(

1 +
r

k

)k
,

since (
1 +

r

k

)kt
=
[(

1 +
r

k

)k]t
= (bk,r)t.
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Example 2. Suppose that the interest rate r = 0.03 from Example 1 is compounded
daily (365 times). After 1 year, an initial investment of $1000.00 will be worth

S365(1) = 1000(1 + (0.03/365))365 ≈ $1030.45,

after 5 years the investment will be worth

S365(5) = 1000(1 + (0.03/365))365·5 ≈ $1161.83,

and after 10 years it will be worth

S365(10) = 1000(1 + (0.03/365))365·10 ≈ $1349.84.

Comparing the two examples, you can see that compounding interest more frequently
increases the return on the investment. To see this more clearly, we can compute the
effective rate of the investment.

Definition 2.

Given an interest rate r that is compounded k times a year, the effective rate, r̃, is
the interest rate that when compounded annually, earns the same as r compounded k
times a year. In this context, the original interest rate r is called the nominal rate.
The effective rate is computed using the formula

r̃ =
(

1 +
r

k

)k
− 1.

Example 3. The effective rate of r = 3%, compounded 365 times a year is

r̃ =
(

1 +
0.03
365

)365

− 1 ≈ 3.045%.

1.2 ‘The’ exponential function

Among all possible bases for exponential functions there are three that are more com-
monly used than others. Base 10 is popular because most modern cultures count base 10,
(because humans generally have 10 fingers). Computer scientists use base 2 in their com-
putations because of the binary nature of computer architecture. However, from a calculus
perspective the ‘best’ base for an exponential function is the number

e = 2.7182818284590452354 . . .

e is an irrational number, and it is the ‘natural’ base for an exponential function. You will
understand this statement better the more calculus you know. Indeed, many people refer
to the function

f(x) = ex

as the exponential function, or the natural exponential function.

2. Logarithms

Suppose that $1000.00 is invested in an account earning 5%, compounded annually. How
many years will it take for the investment to double in value? To answer this question, we
need to solve the equation

1000(1.05)t = 2000,
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for the variable t. Dividing both sides of this equation by 1000 reduces the problem to its
basic form

(2.1) (1.05)t = 2.

In other words, t, is the exponent to which we have to raise 1.05 in order to get 2.

Definition 3.

The logarithm base b of x, is the number y satisfying

by = x.

We write this as
y = logb x.

This is a function of x.

With the logarithm we can answer the question above. The solution, t0, to the problem
above is simply t0 = log1.05 2.

From its definition, you can see that the logarithm function base b, y = logb x, is the
inverse function of the exponential function y = bx. Recall that f(x) and g(x) are inverse
functions if

f(g(x)) = g(f(x)) = x.

You should check that logb x and bx satisfy this relation.

The domain of definition of log functions is also determined by its definition. Specifically,
since logb x = y implies that x = by, it follows that x > 0, since by is always strictly greater
than 0. In other words
Fact 6.

The function y = logb x is defined for x > 0.

The algebraic properties of exponential functions (Fact 2) give rise to corresponding
algebraic properties of log functions.

Fact 7.

a. logb 1 = 0
b. logb b = 1
c. logb(X · Y ) = logbX + logb Y
d. logb(1/X) = − logbX
e. logb(Xα) = α · (logbX)

Example 4.

log5

[
5x2y3

z4

]
= 1 + 2 log5 x+ 3 log5 y − 4 log5 z.

Just as every exponential function can be expressed in terms of any other exponential
function, every log function can be expressed in terms of any other log function. This
simple, but important fact is summarized in the change of base formula
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Fact 8.

logb x =
loga x
loga b

,

for any bases a and b. This is called the change of base formula.

Proof: Suppose that logb x = L, so that bL = x. Use property e. from Fact 7, to see that

loga x = loga(b
L) = L · (loga b).

Now divide both sides above by loga b to get the change of base formula

logb x = L =
loga x
loga b

.

2.1 The natural log function

Just as the number e is the natural choice for the base of an exponential function, e is
also the natural choice for the base of a log function. As I mentioned before, we need to
know a bit more calculus to understand what ‘natural’ means in this context. The function
loge x is therefore called the natural log function‡ (and sometimes just ‘the’ log function),
and many people use the special notation§

loge x = lnx.

Fact 9.

Every log function is a constant multiple of the natural log function.

Proof: This follows directly from the change of base formula, Fact 8, with a replaced by e:

logb x =
lnx
ln b

=
(

1
ln b

)
· lnx.

Remember: (1/ ln b) is a constant (that depends on b).

Using the natural log function, we can also express every exponential function in terms
of the exponential function (ex) in a simple way.

Fact 10.

For any base b,
bx = ex ln b.

Proof: The natural log of bx is ln(bx) = x ln b, and this means that

bx = eln(bx) = ex ln b.

Comment: These two facts will be useful when we learn to differentiate, since the deriva-
tives of ex and lnx are particularly simple.

Exercise 1.

Use your calculator to compute log7 11 and log3 10.

‡log10x is often called the common logarithm.
§Though in many advanced math texts, people simply write log x when they mean loge x. This can be

confusing, since in many lower division math texts, (and on calculators), log x is used to mean log10 x.
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Exercise 2.

Use the functions ex and lnx on your calculator to compute 32 and 23 (you can check
your own work, since you know the answers to these two). Repeat this to compute 1.053.14.

3. A note on computation

These days most of us rely on calculators of one form or another to compute the actual
values of most basic functions. This is certainly the case for functions like ex and lnx. The
question is: how does the calculator compute the values of these functions?

All of the computational operations that we perform, no matter how sophisticated are
ultimately based on the elementary operations of addition and multiplication. Even com-
puters function based on simple addition-like operations. After the elementary operations,
the next level of complexity in computation is extracting (integer) roots, like square roots,
cube roots, etc. To extract a root¶ you need to solve a polynomial equation. E.g., computing
3
√

7 is equivalent to solving the equation x3 = 7 for the variable x.
Functions that can be defined using elementary operations and extracting roots are called

algebraic functions.
Example 5. Polynomials and rational functions (quotients of polynomials) are simple
algebraic functions. E.g.,

P (x) = 3x4 − 2x2 + 7x− 11 and R(x) =
x2 + 3x+ 1

3x3 − 5x2 + 2x− 1
are both defined in terms of multiplication, addition, subtraction and division and nothing
else. The function

3
√
x2 + x+ 2

is a slightly more involved algebraic function.

Functions that cannot be built up in a finite number of steps from the elementary opera-
tions and root extractions are called transcendental functions.‖ Exponential and logarithmic
functions fall into this category. To compute the precise value of ex or lnx, we need to eval-
uate the mathematical limit of certain polynomials whose degree is getting infinitely large.

For example

ex = 1 + x+
x2

2
+
x3

6
+ · · ·+ xn

n!
+ · · · ,

where n! = n · (n− 1) · (n− 2) · · · 2 · 1 is the factorial function. And, if |x| < 1 then

ln(1 + x) = x− x2

2
+
x3

3
− · · ·+ (−1)n+1x

n

n
+ · · · .

In both the equations above, the final ellipses (· · · ) indicate that we need to continue to
add (or subtract) the appropriate terms forever. This is impossible from a practical point
of view. On the other hand, it is possible to compute very good approximations for ex if
we compute the finite polynomial

ex ≈ 1 + x+
x2

2
+
x3

6
+ · · ·+ xn

n!
,

¶Without using the exponential and natural log functions.
‖Because they transcend algebraic operations.
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for a very large value of n, and similarly for ln(1 + x).
Electronic calculators and computers use these ideas as well as large tables of values that

have been computed and some clever algorithms to compute ex and lnx. The values that
they produce are approximations, but very good ones.

Exercise 3.

Use your calculator to compute e2. Remember, the number that pops up is also an
approximation, but it’s a decent one, and we’ll take it as the ‘correct’ value. Now compute
the value of the polynomial

En(x) = 1 + x+
x2

2
+
x3

6
+ · · ·+ xn

n!
for x = 2 and larger and larger values of n. How big does n have to be before the first 2
decimal digits of En(2) agree with the ‘correct’ value e2 that your calculator produced?

Exercise 4.

Repeat the previous exercise to compute an approximation to ln 2 using the polynomial

Ln(x) = x− x2

2
+
x3

3
− · · ·+ (−1)n+1x

n

n

to approximate ln(1 + x). Note that Ln(x) gives accurate approximations of ln(1 + x) only
when −1 < x < 1. On the other hand ln 2 = − ln 0.5, and 0.5 = 1 + (−0.5). You do the
rest. How big does n have to be before your approximation agrees with the first two decimal
digits of your calculator’s answer?


