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1. The approximation formula

If y = f(x) is a differentiable function then its derivative, y′ = f ′(x), gives the rate of
change of the variable y with respect to the variable x. The term ‘rate of change’ comes
from the definition of the derivative

(1.1) f ′(x0) = lim
∆x→0

f(x0 + ∆x)− f(x0)
∆x

= lim
∆x→0

∆y

∆x
,

where ∆x = x−x0, is the change in the value of the variable x, and ∆y = f(x0+∆x)−f(x0),
is the corresponding change in the value of the variable y. Thus, the derivative is the limit,
(as ∆x goes to 0), of the ratio of the changes ∆y/∆x. So rate-of-change comes from ratio-
of-changes.

The notion of rate-of-change can be made more concrete by remembering the definition
of the limit. Specifically, it follows from the definition of the limit that if ∆x is sufficiently
close to 0, then the ratio on the right-hand side of equation (1.1) is approximately equal to
the value of the derivative on the left-hand side. I.e., if ∆x is small, then

(1.2)
∆y

∆x
≈ f ′(x0).

Now, if we multiply both sides of the approximate equality above by ∆x we obtain a simple,
but very important formula, that I call the approximation formula.

Fact 1. If y = f(x) is differentiable at x = x0, and if ∆x is sufficiently small, then

(1.3) ∆y ≈ f ′(x0) ·∆x.

Comments:

a. If |∆x| < 1, then the approximation in (1.3) is more accurate than the one in (1.2).
(Can you say why?)

b. The quality of the estimate given by the approximation formula depends very
strongly on the specific function f(x), the point x0, and the size of ∆x. I will
illustrate this dependence in the examples of Section 2, below.

The approximation formula may also be understood geometrically. Recall that the deriv-
ative f ′(x0) may also be interpreted as the slope of the tangent line to the graph y = f(x)
at the point (x0, f(x0)). Using the point-slope formula, we find that the equation of this
tangent line is

y = f(x0) + f ′(x0)(x− x0).

The vertical distance between the tangent line and the graph y = f(x) at a point, x0 + ∆x,
is the absolute value of the difference between the y-values at this point. In other words,
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The small (red) segment represents the 
vertical distance between the tangent 
line and the graph at the point x=1.5. The (green) line is tangent 

to the (blue) graph y=x2 at 
the point (1,1) on the graph.

Figure 1. Geometric interpretation of the approximation formula.

the vertical distance between the graph and the tangent line at x0 + ∆x is∣∣∣ f(x0 + ∆x)−
[
f(x0) + f ′(x0)(x0 + ∆x− x0)

]∣∣∣ =
∣∣∣ [

(f(x0 + ∆x)− f(x0)
]
− f ′(x0) ·∆x

∣∣∣
=

∣∣ ∆y − f ′(x0) ·∆x
∣∣ .

So, the approximation formula says that if ∆x = x−x0 is sufficiently small, then the vertical
distance between the graph of the function and the tangent line (at the point x0 + ∆x) is
also small. See Figure 1.

2. Examples of the approximation formula in action

This section contains simple examples that illustrate how the quality of the approximation
in the approximation formula depends on the function f(x), the starting point x0 and the
change in the x-variable, ∆x. You can skip this subsection if you want, but I recommend
that you don’t. In fact I recommend that you redo all the computations that I do below
for good measure.

Example 1. Suppose that f(x) =
√

x = x1/2, so f ′(x) = 1
2x−1/2. I’ll apply the

approximation formula to this function for two values of x0 and several different values of
∆x. First, if x0 = 4, then the approximation formula reads

∆y =
√

4 + ∆x−
√

x ≈ 1
2
· 4−1/2 ·∆x =

∆x

4
.

Now, I’ll compare the estimated change in the y-value provided by the approximation
formula above, to the actual† change in the y-value for several values of ∆x. For neatness’

†Note that this ‘actual’ difference is also an approximation, albeit a much more accurate one.
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sake, I’ve collected the results in the table below, in which the left-hand column contains
the different values of ∆x, the middle column gives the corresponding estimates for ∆y
provided by the approximation formula and the right-hand column gives the actual values
(rounded to 5 decimal places) of ∆y.

∆x f ′(x0) ·∆x ∆y
4 1 0.82843
2 0.5 0.44949
1 0.25 0.23607

0.5 0.125 0.12132
0.1 0.025 0.02485

Table 1. Approximation formula in action: (i) f(x) =
√

x and x0 = 4.
A couple of things may be observed. First, the estimates become more accurate as ∆x

gets smaller. When ∆x = 4, the estimate is off by more than 0.1, and when ∆x = 0.1, the
estimate is off by less than 0.0002. Second, all the estimates are too big ‡ in this example.

Let’s see what happens when we use the same function, and the same values of ∆x, but
with a different starting point, namely x0 = 25. In this case the approximation formula
gives

∆y =
√

25 + ∆x−
√

25 ≈ 1
2
· 25−1/2 ·∆x =

∆x

10
,

and repeating the computations above produces the table

∆x f ′(x0) ·∆x ∆y
4 0.4 0.38516
2 0.2 0.19615
1 0.1 0.09902

0.5 0.05 0.04975
0.1 0.01 0.00999

Table 2. Approximation formula in action: (ii) f(x) =
√

x and x0 = 25.

What do we see here? First of all, the same patterns we observed above still hold, namely
better estimates for smaller values of ∆x, and all the estimates are bigger than the actual
differences. But we can also compare the results in the first table to the results in the
second table, and we see that for the same values of ∆x, the estimates in the second table
(x0 = 25) are much better§ than the corresponding estimates in the first table (x0 = 4).

This example illustrated two of the dependencies that I mentioned above, namely the
quality of the estimate provided by the approximation formula depends on x0 and on ∆x.
The next example will show that there is also a strong dependence on the the function,
f(x).
Example 2. In this example, I’ll apply the approximation formula to the function
f(x) = x3, and I’ll generate the same table that I did in Example 1 for x0 = 4, with the
same values of ∆x that I used before. I’ll leave it to you, as an exercise, to produce the
same table for x0 = 25.

‡Consider the geometric interpretation of the approximation formula, to understand why.
§The estimates in the x0 = 25 table are about 10 times closer to the actual values than the corresponding

estimates in the x0 = 4 table.
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In this case, f ′(x) = 3x2, and for x0 = 4, the approximation formula gives

∆y = (4 + ∆x)3 − 43 ≈ f ′(x0)∆x = 3 · 42 ·∆x = 48 ·∆x,

and we obtain the table
∆x f ′(x0) ·∆x ∆y
4 192 448
2 96 152
1 48 61

0.5 24 27.125
0.1 4.8 4.921

Approximation formula in action: (iii) f(x) = x3 and x0 = 4.
What do we observe here? The first thing to notice that the approximations are not

nearly as good in this case as they were in the first example, (f(x) =
√

x, x0 = 4). Not until
∆x = 0.1 is the distance between the estimate, 48 ·∆x, and the actual value, (4+∆x)3−43,
less than 1. This illustrates the third dependency that I mentioned before. Namely, the
quality of the approximation depends on the function too. The approximation formula will
yield very good approximations for this function too, but we need smaller values of ∆x to
get them. For example, if ∆x = 0.01 then

∆y = (4.013 − 43) = 0.481201 and 48 · (0.01) = 0.48,

and the difference between the estimate and the actual value of ∆y is about 0.0012.
There are other differences between this example and the first two above. For one thing,

the estimates in this case are all too small, (see the footnote on the previous page). And,
finally, as you should check by repeating the second half of Example 1 for yourself, if we
increase x0, then the estimated values of ∆y will be worse for the same choices of ∆x. (In
Example 1, the estimates improved when x0 increased.)

3. Marginal functions and approximation in economics

Economic activity is often described in terms of the change in the values of the economic
functions being considered. Economists use the word ‘marginal’ to describe this change. For
example, the marginal revenue of a firm is defined to be the change in revenue generated
by an increase in output of one unit. I.e., if r = f(q) is the revenue function, where q is the
firm’s output and r is its revenue, then the marginal revenue is

(3.1) mr = f(q + 1)− f(q).

If the function in question is differentiable, then the approximation approximation for-
mula can be used to estimate marginal behavior. For example, applying the approximation
formula, (1.3), to Equation (3.1), above, we find that

(3.2) mr = f(q + 1)− f(q) ≈ f ′(q) ·∆q = f ′(q) · 1 =
dr

dq
.

In other words, the marginal revenue is approximately equal¶ to the derivative of the revenue
function. All of this leads to the following definition.

¶ Strictly speaking, this statement is only accurate if the revenue function is ‘well behaved’,
since in general, the linear approximation formula is only accurate when ∆q is ‘sufficiently small’,
and for many functions, ∆q = 1 is not sufficiently small.
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If the revenue function r = f(q) is differentiable then the marginal revenue
function is defined to be the derivative of the revenue function, dr/dq.

This definition is only one example. In general, in the context of differential calculus ap-
plied to economics, then the word marginal connotes derivative. Some of the most common
examples are listed below.

• The marginal cost function is the derivative of the cost function, with respect to
output.
• The marginal propensity to consume is the derivative of the consumption func-

tion with respect to income.
• The marginal propensity to save is the derivative of the savings function with

respect to income.
• The marginal revenue product is the derivative of revenue with respect to labor

input (number of employees).
• The marginal product of capital (or labor, or x, etc.) is the derivative of output

with respect to capital (or labor, or x, etc.).

Example 3. Suppose that a firm’s production function is given by

q = 100(m + 4)2/3,

where q is the firm’s output, and m is the number of the firm’s employees. The firm’s
marginal product of labor‖ is

dq

dm
=

200
3

(m + 4)−1/3.

Suppose that the firm’s current workforce is m0 = 60. By how much can the firm expect
output to increase if they hire one more employee? According to the approximation formula

∆q ≈
(

dq

dm

∣∣∣∣
m=60

)
·∆m =

200
3
· 64−1/3 · 1 =

50
3
≈ 16.667.

In other words, if the number of employees increases from 60 to 61, then the output will
approximately increase by the value of the marginal product function when m = 60. How
good is this approximation? Well,

q(61)− q(60) = 100 · 652/3 − 100 · 642/3 = 16.62356,

rounded to 5 decimal places, so the approximation in this case is reasonably good — the
difference between the estimate and the actual change in output is less than 0.05.
Example 4. The consumption function for a small, developing country is estimated to
be

C =
9Y 2 + 4Y + 2

10Y + 3
,

where C is per-capita consumption and Y is per-capita income. Both C and Y are measured
in 1000’s of dollars. The current per-capita income is Y0 = 1.2. What will the approximate
change in consumption be if per-capita income increases by $250?

The marginal propensity to consume∗∗ in this case is

dC

dY
=

(18Y + 4)(10Y + 3)− 10(9Y 2 + 4Y + 2)
(10Y + 3)2

=
90Y 2 + 54Y − 8
100Y 2 + 60Y + 9

.

‖The derivative in this example is computed using the chain rule.
∗∗I used the quotient rule here.
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The (projected) change in income is ∆Y = 0.25 = 250
1000 , since Y is measured in 1000’s of

dollars, so the (projected) change in per-capita consumption is

∆C ≈
(

dC

dY

∣∣∣∣
Y =1.2

)
·∆Y = 0.828444 · 0.25 = 0.207111,

according to the approximation formula. In dollar terms, the projected per-capita increase
in consumption is about $207.

There is a natural question to ask here. Namely, why use the approximation formula to
estimate the change in the firm’s output? Why not compute the change directly? In the
laptop era, why compute an approximate value when the precise value is a few key-strokes
away?

The answer has a theoretical component and a practical, ‘real-world’ component. The
theoretical part of the answer is this. For functions like f(x) = x2/3, s = et or U = ln v,
to name a few simple examples, the values that your calculator (or laptop) produces are
usually approximations themselves, albeit very good ones. In other words, there is nothing
wrong with using an approximation — much of (applied) mathematics involves finding good
approximations. The approximation formula is one of the most basic (and most important)
approximation tools in your mathematical toolkit.

From a practical point of view, the functions that economists use to model economic
reality are all produced using sophisticated statistical and mathematical tools, from actual
data. But this data has gaps, and the approximation formula and its more sophisticated
relatives are used to fill these gaps, and in certain cases predict future values.


