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1. Introduction

The most elementary functions are polynomials because they involve only the most
basic arithmetic operations of addition and multiplication. Polynomials are also easy to
differentiate, and their long term behavior is also very easy to understand.

Mathematical modeling of economic phenomena, however, often leads to functions which
are not polynomials, like exponential functions and logarithm functions, and combinations
of functions that involve division, extracting roots, etc.

Under certain conditions, it is possible to find polynomials that provide good approx-
imations to more general functions. In the following sections I’ll outline one of the most
basic and important ways of doing this for functions that are differentiable. I’ll focus on the
first and second degree approximations (linear and quadratic), but for completeness’ sake,
I’ll briefly describe the general case as well.

2. Linear approximation.

For a function f(x) that is differentiable at a point x = x0, we deduced the following
approximation formula from the definition of the derivative,

f(x)− f(x0) ≈ f ′(x0)(x− x0). (2.1)

I mentioned that this approximation is accurate when the difference |x− x0| is sufficiently
small. Adding f(x0) to both sides of (2.1), gives a formula for approximating f(x) in the
neighborhood of x0 by a linear function,†

f(x) ≈ f(x0) + f ′(x0)(x− x0). (2.2)

The linear function, T (x) = f(x0) + f ′(x0)(x−x0), should look familiar to you, because
its graph is precisely the tangent line to the graph y = f(x) at the point (x0, f(x0)), and
the approximation (2.2) has a simple geometric interpretation. Namely, the tangent line
y = T (x) is close to the graph y = f(x), when x is sufficiently close to x0. By close, I mean
that the vertical distance, |T (x)− f(x)|, is small.

Example 1. The graph of the function f(x) =
√
−x2 + 4x + 25 − 2, and the graph of

the linear approximation to this graph at the point (4, 3), T (x) = 3− 0.4(x− 4), are both
displayed in Figure 1.

A quick glance at the figure shows two things. First, the tangent line is very close to
the graph when x is close to 4. Second, as x moves away from 4 (in either direction), the

†In mathematical terms, a ‘neighborhood’ of x0 is an interval around x0 of the form (x0−δ, x0+δ), where
δ is a small, positive constant.
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Figure 1: Linear approximation to f(x) =
√
−x2 + 4x + 25− 2, centered at (4, 3).

vertical distance between the tangent line and the graph grows larger. The explanation for
this first phenomenon has already been given,‡ but we can also explain it as follows.

The two functions, T (x) and f(x), have the same value and the same slope at x0 = 4,
i.e., T (4) = f(4) and T ′(4) = f ′(4). This means that their graphs emanate from the same
point (4, 3) and they both move in the same direction (same slope). So for a while, the two
graphs stay close to each other.

The explanation for the second phenomenon is also relatively simple. The slope of the
tangent line is constant (equal to f ′(4)), but the slope of the graph y = f(x) is not constant.
As x moves away from 4, the derivative of f(x) changes. And, as the slope changes, the
graph y = f(x) ‘bends away’ from the tangent line y = T (x).

3. The second order Taylor approximation.

The rate of change of the derivative f ′(x) is given by the second derivative, f ′′(x). This
fact suggests the following idea: To improve upon the linear approximation to the function
f(x) near the point x0, look for a function that has the same value at x0 as f(x), the same
derivative at x0 as f(x), and the same second derivative at x0 as f(x). Furthermore,
the function we’re looking for should be as simple as possible.

In other words, we’re looking for a (differentiable) function T2(x) satisfying

T2(x0) = f(x0), T ′2(x0) = f ′(x0) and T ′′2 (x0) = f ′′(x0). (3.1)

And T2(x) should be ‘simple’. The simplest functions are linear, but if T2(x) = ax+ b, then
T ′2(x) = a and T ′′2 (x) = 0. If f ′′(x0) = 0, then the linear approximation fits the bill, but if
f ′′(x0) 6= 0, then the function that we’re looking for cannot be a linear function.

‡Earlier in the course.
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The next simplest functions are quadratic functions. If T2(x) = ax2 + bx + c, then
T ′2(x) = 2ax+b and T ′′2 (x) = 2a. The conditions in (3.1) give us a system of three equations
for a, b and c. Namely

ax20 + bx0 + c = f(x0)
2ax0 + b = f ′(x0)

2a = f ′′(x0).
(3.2)

This system of linear equations is easy to solve,§ but by being a little clever, we can make
our work even easier. The idea is to express the (as of yet unknown) function T2(x) in terms
of the difference (x− x0). We are still looking for a quadratic function, but we write it as

T2(x) = a0 + a1(x− x0) + a2(x− x0)
2.

The motivation for this idea comes from the linear approximation, which is naturally ex-
pressed in terms of (x− x0).

The first and second derivatives of T2(x), written in this way, are T ′2(x) = a1+2a2(x−x0)
and T ′′2 (x) = 2a2. When we impose the conditions (3.1) on this version of T2(x) and its
derivatives, the simple system (3.2) is replaced by the very simple system

a0 + a1(x0 − x0) + a2(x0 − x0)
2 = f(x0)

a1 + 2a0(x0 − x0) = f ′(x0)
2a2 = f ′′(x0),

(3.3)

which is very simple because x0 − x0 = 0, so the system (3.3) reduces to

a0 = f(x0), a1 = f ′(x0) and a2 =
f ′′(x0)

2
.

Definition 1.

The second degree Taylor polynomial for f(x) centered at x 000 is the quadratic
function

T2(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2. (3.4)

This function satisfies the conditions

T2(x0) = f(x0), T ′2(x0) = f ′(x0) and T ′′2 (x0) = f ′′(x0).

The approximation

f(x) ≈ T2(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 (3.5)

is called the second order Taylor approximation. The second order approximation is
usually better than the linear (first order) approximation, as long as the difference |x− x0|
is small enough.

§Try it, starting with solving the third equation for a, then working backwards to solve for b and then c.
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Example 2. Returning to the function f(x) =
√
−x2 + 4x + 25− 2 from Example 1, we

find that it’s second degree Taylor polynomial, centered at (4, 3), is given by

T2(x) = 3− 0.4(x− 4)− 0.116(x− 4)2,

as you can (and should!) verify by direct computation.

The graphs of f(x), its linear approximation and its quadratic approximation are all
displayed in Figure 2, with the quadratic approximation in red.
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Figure 2: Linear and quadratic approximations to f(x) =
√
−x2 + 4x + 25− 2.

As you can see, the quadratic approximation is better than the linear approximation in
two ways. First, the quadratic approximation is closer to the graph of the original function
than the tangent line. Second, it stays closer to the original graph for longer. This second
phenomenon can be explained by the fact that the quadratic approximation is bending in
the same way as the original graph around the point (4, 3). More properly said, T2(x) and
f(x) have the same concavity at the point (4, 3).

To get a numerical view of how the second order approximation improves on the linear
approximation, consider the next example.

Example 3. Let f(x) =
√
x = x1/2, and let x0 = 16. The first and second derivatives of

this function are f ′(x) = 1
2x
−1/2 and f ′′(x) = −1

4x
−3/2. Thus,

f(16) = 4, f ′(16) =
1

8
and f ′′(16) = − 1

256
.

The first degree (linear) Taylor polynomial for f(x) = x1/2, centered at x = 16 is
therefore given by

T (x) = 4 +
1

8
(x− 16)
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and the second degree Taylor polynomial (centered at the same point) is given by

T2(x) = 4 +
1

8
(x− 16)− 1

512
(x− 16)2.

I’ll test the accuracy of the linear and quadratic approximations for x = 16.81, for which
we have

√
16.81 = 4.1. The linear approximation gives

T (16.81) = 4 +
1

8
(16.81− 16) = 4.10125,

and the quadratic approximation gives

T2(16.81) = 4 +
1

8
(16.81− 16)− 1

512
(16.81− 16)2 = 4.0999685546875.

The linear approximation is off by |4.10125−4.1| = 0.00125, while the quadratic approx-
imation is off by |4.0999685546875−4.1| = 0.0000314453125. The quadratic approximation,
in this case, is more than 30 times closer to the truth than the linear approximation.

4. The Taylor polynomial of a function.

In general, there is no reason to stop at two derivatives. Assume that the function f(x)
has derivatives of order up to and including n, defined at the point x0. The system of
equations (3.3), that we solved to find the coefficients of the quadratic Taylor polynomial,
generalizes easily to find a polynomial Tn(x) satisfying the n + 1 conditions

Tn(x0) = f(x0),
T ′n(x0) = f ′(x0),
T ′′n (x0) = f ′′(x0),
T ′′′n (x0) = f ′′′(x0),

...

T
(n)
n (x0) = f (n)(x0).


(4.1)

Generalizing what we did in the quadratic case, we write

Tn(x) = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n,

and use the conditions in (4.1) to obtain a very simple system of equations for the coefficients
a0, a1, . . . , an. Indeed, the first condition gives

f(x0) = Tn(x0) = a0 + a1(x0 − x0) + a2(x0 − x0)
2 + · · ·+ an(x0 − x0)

n = a0,

which implies that a0 = f(x0). Differentiating once gives

T ′(x) = a1 + 2a2(x− x0) + 3a3(x− x0)
2 + · · ·+ nan(x− x0)

n−1,

so T ′(x0) = a1 and the second condition, T ′(x0) = f ′(x0), implies that a1 = f ′(x0). Differ-
entiating again gives

T ′′(x) = 2a2 + 6a3(x− x0) + · · ·+ n(n− 1)an(x− x0)
n−2,
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so T ′′(x0) = 2a2 and the condition T ′′(x0) = f ′′(x0) implies that a2 = f ′′(x0)/2. Continuing,
we have

T ′′′(x) = 6a3 + 24a4(x− x0) + · · ·+ n(n− 1)(n− 2)an(x− x0)
n−3,

so T ′′′n (x0) = 6a3, and the condition T ′′′(x0) = f ′′′(x0) implies that a3 = f ′′′(x0)/6.

In general, Differentiating k times (k ≤ n) and evaluating at x = x0, gives T (k)(x0) =

(1 · 2 · 3 · · · k) · ak, and the condition T
(k)
n (x0) = f (k)(x0) implies that

ak =
f (k)(x0)

k!
,

where k!, pronounced ‘k factorial’ is shorthand for the product 1 · 2 · 3 · · · k.¶

Definition 2.

The polynomial

Tn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n (4.2)

is called the nth degree Taylor polynomial of f(x), centered at x = x0. This is the
unique polynomial of degree n that satisfies the n + 1 conditions in (4.1).

Example 4. Let’s find the 4th degree Taylor polynomial of f(x) = lnx, centered at x = 1.
First, we compute the derivatives up to and including order 4:

f ′(x) = x−1, f ′′(x) = −x−2, f ′′′(x) = 2x−3 and f (4)(x) = −6x−4.

Evaluating lnx and its derivatives at x = 1, and using the definition of T4(x), above, we
find that

T4(x) = ln 1 + 1−1 · (x− 1) +
−1−2

2
· (x− 1)2 +

2 · 1−3

6
(x− 1)3 +

−6 · 1−4

24
(x− 1)4

= (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4.

The graphs of y = lnx and y = T4(x) (red) appear in Figure 3. These graphs high-
light two important features of the Taylor polynomial and how well it may or may not
approximate the function from which it was derived.

First of all, looking at the whole picture shows that the Taylor polynomial T4(x) behaves
completely differently than lnx. For example, as we can easily see in the figure, if x > 3,
then T4(x) < −1 (and T4(x) is decreasing), while lnx > 1 (and lnx is increasing).

On the other hand, if we only look in the vicinity of the point x = 1, the two functions
are almost identical. In Figure 3, the two graphs are indistinguishable when |x− 1| < 1/2.‖

¶This function grows very rapidly, e.g., 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 10! = 3628800 and
15! = 1307674368000. In fact, when n is very large, n! ≈ (n/e)n ·

√
2πn. This approximation is called

Stirling’s formula.
‖The graphing utility that I use rounds plot positions to 4 decimal places, so points on the two graphs

that are less than 0.0005 apart may appear to coincide.
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Figure 3: The graphs of lnx and T4(x).

If you prefer numerical evidence, you can evaluate lnx and T4(x) on your favorite calculator,
at points close to 1, and see how far apart the values are. According to my TI-30XA

• ln 1.5− T4(1.5) ≈ 0.0044234,

• ln 1.25− T4(1.25) ≈ 0.0001618 and

• ln 1.1− T4(1.1) ≈ 0.0000018.

The errors of approximation have all been rounded to 7 decimal places, and as you can see,
the closer the argument is to 1, the better the approximation.

Exercises.

1. Compute the 2nd degree Taylor polynomial for the function R(x) =
x3 + 2x + 1

x + 3
centered

at the point (1, 1). Use the quadratic Taylor approximation to estimate R(1.2). What
is the error of the approximation?

2. Find the 3rd degree Taylor polynomial for the function f(x) =
√
x, centered at x0 = 100.

Use this to compute an approximate value for
√

110.

3. Find the 4th degree Taylor polynomial for the function g(x) = ex, centered at x0 = 0.
Use this to compute an approximate value for 4

√
e = e1/4.

4. a. Find the 7th degree Taylor polynomial for f(x) = lnx, centered at x0 = 1.

b. Use your answer to a. to find approximate values for ln(2/3) and ln(3/4).

c. Use your answers to b. to find an approximate value for ln(3). Do not use your
answer to part a. (Hint: 3 = (4/3) · (3/2) · (3/2), 3/2 = 1/(2/3) and 4/3 = 1/(3/4).
Use properties of the logarithm function.)
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